TSTP Solution File: PUZ096^5 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : PUZ096^5 : TPTP v6.1.0. Bugfixed v5.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n115.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:28:59 EDT 2014

% Result   : Timeout 300.05s
% Output   : None 
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----NO SOLUTION OUTPUT BY SYSTEM
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : PUZ096^5 : TPTP v6.1.0. Bugfixed v5.2.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n115.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 08:16:41 CDT 2014
% % CPUTime  : 300.05 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0xa82170>, <kernel.Constant object at 0xa80830>) of role type named c1_type
% Using role type
% Declaring c1:fofType
% FOF formula (<kernel.Constant object at 0xce3998>, <kernel.Single object at 0xa80638>) of role type named c2_type
% Using role type
% Declaring c2:fofType
% FOF formula (<kernel.Constant object at 0xa82170>, <kernel.Single object at 0xa802d8>) of role type named c3_type
% Using role type
% Declaring c3:fofType
% FOF formula (<kernel.Constant object at 0xa82170>, <kernel.Single object at 0xa80830>) of role type named c4_type
% Using role type
% Declaring c4:fofType
% FOF formula (<kernel.Constant object at 0xa80908>, <kernel.DependentProduct object at 0xa81fc8>) of role type named g_type
% Using role type
% Declaring g:(fofType->(fofType->fofType))
% FOF formula (<kernel.Constant object at 0xa80f38>, <kernel.DependentProduct object at 0xa81830>) of role type named s_type
% Using role type
% Declaring s:(fofType->fofType)
% FOF formula (<kernel.Constant object at 0xa80758>, <kernel.DependentProduct object at 0xa81830>) of role type named cCKB6_BLACK_type
% Using role type
% Declaring cCKB6_BLACK:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0xa80ab8>, <kernel.DependentProduct object at 0xa81830>) of role type named cCKB6_H_type
% Using role type
% Declaring cCKB6_H:(fofType->(fofType->(fofType->(fofType->Prop))))
% FOF formula (<kernel.Constant object at 0xa80758>, <kernel.DependentProduct object at 0xa811b8>) of role type named cCKB_INJ_type
% Using role type
% Declaring cCKB_INJ:((fofType->(fofType->(fofType->(fofType->Prop))))->Prop)
% FOF formula (((eq (fofType->(fofType->Prop))) cCKB6_BLACK) (fun (Xu:fofType) (Xv:fofType)=> (forall (Xw:(fofType->(fofType->Prop))), (((and ((Xw c1) c1)) (forall (Xj:fofType) (Xk:fofType), (((Xw Xj) Xk)->((and ((Xw (s (s Xj))) Xk)) ((Xw (s Xj)) (s Xk))))))->((Xw Xu) Xv))))) of role definition named cCKB6_BLACK_def
% A new definition: (((eq (fofType->(fofType->Prop))) cCKB6_BLACK) (fun (Xu:fofType) (Xv:fofType)=> (forall (Xw:(fofType->(fofType->Prop))), (((and ((Xw c1) c1)) (forall (Xj:fofType) (Xk:fofType), (((Xw Xj) Xk)->((and ((Xw (s (s Xj))) Xk)) ((Xw (s Xj)) (s Xk))))))->((Xw Xu) Xv)))))
% Defined: cCKB6_BLACK:=(fun (Xu:fofType) (Xv:fofType)=> (forall (Xw:(fofType->(fofType->Prop))), (((and ((Xw c1) c1)) (forall (Xj:fofType) (Xk:fofType), (((Xw Xj) Xk)->((and ((Xw (s (s Xj))) Xk)) ((Xw (s Xj)) (s Xk))))))->((Xw Xu) Xv))))
% FOF formula (((eq (fofType->(fofType->(fofType->(fofType->Prop))))) cCKB6_H) (fun (Xx:fofType) (Xy:fofType) (Xu:fofType) (Xv:fofType)=> ((and ((cCKB6_BLACK Xx) Xy)) ((or ((or ((or ((and ((and (((eq fofType) ((g (s (s Xx))) (s Xy))) c1)) (((eq fofType) Xu) (s (s (s Xx)))))) (((eq fofType) Xv) (s Xy)))) ((and ((and (((eq fofType) ((g (s (s Xx))) (s Xy))) c2)) (((eq fofType) Xu) (s (s Xx))))) (((eq fofType) Xv) (s (s Xy)))))) ((and ((and (((eq fofType) ((g (s (s Xx))) (s Xy))) c3)) (((eq fofType) Xu) (s Xx)))) (((eq fofType) Xv) (s Xy))))) ((and ((and (((eq fofType) ((g (s (s Xx))) (s Xy))) c4)) (((eq fofType) Xu) (s (s Xx))))) (((eq fofType) Xv) Xy)))))) of role definition named cCKB6_H_def
% A new definition: (((eq (fofType->(fofType->(fofType->(fofType->Prop))))) cCKB6_H) (fun (Xx:fofType) (Xy:fofType) (Xu:fofType) (Xv:fofType)=> ((and ((cCKB6_BLACK Xx) Xy)) ((or ((or ((or ((and ((and (((eq fofType) ((g (s (s Xx))) (s Xy))) c1)) (((eq fofType) Xu) (s (s (s Xx)))))) (((eq fofType) Xv) (s Xy)))) ((and ((and (((eq fofType) ((g (s (s Xx))) (s Xy))) c2)) (((eq fofType) Xu) (s (s Xx))))) (((eq fofType) Xv) (s (s Xy)))))) ((and ((and (((eq fofType) ((g (s (s Xx))) (s Xy))) c3)) (((eq fofType) Xu) (s Xx)))) (((eq fofType) Xv) (s Xy))))) ((and ((and (((eq fofType) ((g (s (s Xx))) (s Xy))) c4)) (((eq fofType) Xu) (s (s Xx))))) (((eq fofType) Xv) Xy))))))
% Defined: cCKB6_H:=(fun (Xx:fofType) (Xy:fofType) (Xu:fofType) (Xv:fofType)=> ((and ((cCKB6_BLACK Xx) Xy)) ((or ((or ((or ((and ((and (((eq fofType) ((g (s (s Xx))) (s Xy))) c1)) (((eq fofType) Xu) (s (s (s Xx)))))) (((eq fofType) Xv) (s Xy)))) ((and ((and (((eq fofType) ((g (s (s Xx))) (s Xy))) c2)) (((eq fofType) Xu) (s (s Xx))))) (((eq fofType) Xv) (s (s Xy)))))) ((and ((and (((eq fofType) ((g (s (s Xx))) (s Xy))) c3)) (((eq fofType) Xu) (s Xx)))) (((eq fofType) Xv) (s Xy))))) ((and ((and (((eq fofType) ((g (s (s Xx))) (s Xy))) c4)) (((eq fofType) Xu) (s (s Xx))))) (((eq fofType) Xv) Xy)))))
% FOF formula (((eq ((fofType->(fofType->(fofType->(fofType->Prop))))->Prop)) cCKB_INJ) (fun (Xh:(fofType->(fofType->(fofType->(fofType->Prop)))))=> (forall (Xx1:fofType) (Xy1:fofType) (Xx2:fofType) (Xy2:fofType) (Xu:fofType) (Xv:fofType), (((and ((((Xh Xx1) Xy1) Xu) Xv)) ((((Xh Xx2) Xy2) Xu) Xv))->((and (((eq fofType) Xx1) Xx2)) (((eq fofType) Xy1) Xy2)))))) of role definition named cCKB_INJ_def
% A new definition: (((eq ((fofType->(fofType->(fofType->(fofType->Prop))))->Prop)) cCKB_INJ) (fun (Xh:(fofType->(fofType->(fofType->(fofType->Prop)))))=> (forall (Xx1:fofType) (Xy1:fofType) (Xx2:fofType) (Xy2:fofType) (Xu:fofType) (Xv:fofType), (((and ((((Xh Xx1) Xy1) Xu) Xv)) ((((Xh Xx2) Xy2) Xu) Xv))->((and (((eq fofType) Xx1) Xx2)) (((eq fofType) Xy1) Xy2))))))
% Defined: cCKB_INJ:=(fun (Xh:(fofType->(fofType->(fofType->(fofType->Prop)))))=> (forall (Xx1:fofType) (Xy1:fofType) (Xx2:fofType) (Xy2:fofType) (Xu:fofType) (Xv:fofType), (((and ((((Xh Xx1) Xy1) Xu) Xv)) ((((Xh Xx2) Xy2) Xu) Xv))->((and (((eq fofType) Xx1) Xx2)) (((eq fofType) Xy1) Xy2)))))
% FOF formula (cCKB_INJ cCKB6_H) of role conjecture named cCKB6_L25000
% Conjecture to prove = (cCKB_INJ cCKB6_H):Prop
% We need to prove ['(cCKB_INJ cCKB6_H)']
% Parameter fofType:Type.
% Parameter c1:fofType.
% Parameter c2:fofType.
% Parameter c3:fofType.
% Parameter c4:fofType.
% Parameter g:(fofType->(fofType->fofType)).
% Parameter s:(fofType->fofType).
% Definition cCKB6_BLACK:=(fun (Xu:fofType) (Xv:fofType)=> (forall (Xw:(fofType->(fofType->Prop))), (((and ((Xw c1) c1)) (forall (Xj:fofType) (Xk:fofType), (((Xw Xj) Xk)->((and ((Xw (s (s Xj))) Xk)) ((Xw (s Xj)) (s Xk))))))->((Xw Xu) Xv)))):(fofType->(fofType->Prop)).
% Definition cCKB6_H:=(fun (Xx:fofType) (Xy:fofType) (Xu:fofType) (Xv:fofType)=> ((and ((cCKB6_BLACK Xx) Xy)) ((or ((or ((or ((and ((and (((eq fofType) ((g (s (s Xx))) (s Xy))) c1)) (((eq fofType) Xu) (s (s (s Xx)))))) (((eq fofType) Xv) (s Xy)))) ((and ((and (((eq fofType) ((g (s (s Xx))) (s Xy))) c2)) (((eq fofType) Xu) (s (s Xx))))) (((eq fofType) Xv) (s (s Xy)))))) ((and ((and (((eq fofType) ((g (s (s Xx))) (s Xy))) c3)) (((eq fofType) Xu) (s Xx)))) (((eq fofType) Xv) (s Xy))))) ((and ((and (((eq fofType) ((g (s (s Xx))) (s Xy))) c4)) (((eq fofType) Xu) (s (s Xx))))) (((eq fofType) Xv) Xy))))):(fofType->(fofType->(fofType->(fofType->Prop)))).
% Definition cCKB_INJ:=(fun (Xh:(fofType->(fofType->(fofType->(fofType->Prop)))))=> (forall (Xx1:fofType) (Xy1:fofType) (Xx2:fofType) (Xy2:fofType) (Xu:fofType) (Xv:fofType), (((and ((((Xh Xx1) Xy1) Xu) Xv)) ((((Xh Xx2) Xy2) Xu) Xv))->((and (((eq fofType) Xx1) Xx2)) (((eq fofType) Xy1) Xy2))))):((fofType->(fofType->(fofType->(fofType->Prop))))->Prop).
% Trying to prove (cCKB_INJ cCKB6_H)
% Found eq_ref00:=(eq_ref0 Xx1):(((eq fofType) Xx1) Xx1)
% Found (eq_ref0 Xx1) as proof of (((eq fofType) Xx1) b)
% Found ((eq_ref fofType) Xx1) as proof of (((eq fofType) Xx1) b)
% Found ((eq_ref fofType) Xx1) as proof of (((eq fofType) Xx1) b)
% Found ((eq_ref fofType) Xx1) as proof of (((eq fofType) Xx1) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx2)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx2)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx2)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx2)
% Found eq_ref00:=(eq_ref0 Xy1):(((eq fofType) Xy1) Xy1)
% Found (eq_ref0 Xy1) as proof of (((eq fofType) Xy1) b)
% Found ((eq_ref fofType) Xy1) as proof of (((eq fofType) Xy1) b)
% Found ((eq_ref fofType) Xy1) as proof of (((eq fofType) Xy1) b)
% Found ((eq_ref fofType) Xy1) as proof of (((eq fofType) Xy1) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xy2)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xy2)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xy2)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xy2)
% Found x20:(P Xx1)
% Found (fun (x20:(P Xx1))=> x20) as proof of (P Xx1)
% Found (fun (x20:(P Xx1))=> x20) as proof of (P0 Xx1)
% Found x20:(P Xy1)
% Found (fun (x20:(P Xy1))=> x20) as proof of (P Xy1)
% Found (fun (x20:(P Xy1))=> x20) as proof of (P0 Xy1)
% Found eq_ref00:=(eq_ref0 (((eq fofType) Xy1) Xy2)):(((eq Prop) (((eq fofType) Xy1) Xy2)) (((eq fofType) Xy1) Xy2))
% Found (eq_ref0 (((eq fofType) Xy1) Xy2)) as proof of (((eq Prop) (((eq fofType) Xy1) Xy2)) b)
% Found ((eq_ref Prop) (((eq fofType) Xy1) Xy2)) as proof of (((eq Prop) (((eq fofType) Xy1) Xy2)) b)
% Found ((eq_ref Prop) (((eq fofType) Xy1) Xy2)) as proof of (((eq Prop) (((eq fofType) Xy1) Xy2)) b)
% Found ((eq_ref Prop) (((eq fofType) Xy1) Xy2)) as proof of (((eq Prop) (((eq fofType) Xy1) Xy2)) b)
% Found eq_ref000:=(eq_ref00 P):((P Xx1)->(P Xx1))
% Found (eq_ref00 P) as proof of (P0 Xx1)
% Found ((eq_ref0 Xx1) P) as proof of (P0 Xx1)
% Found (((eq_ref fofType) Xx1) P) as proof of (P0 Xx1)
% Found (((eq_ref fofType) Xx1) P) as proof of (P0 Xx1)
% Found eq_ref000:=(eq_ref00 P):((P Xy1)->(P Xy1))
% Found (eq_ref00 P) as proof of (P0 Xy1)
% Found ((eq_ref0 Xy1) P) as proof of (P0 Xy1)
% Found (((eq_ref fofType) Xy1) P) as proof of (P0 Xy1)
% Found (((eq_ref fofType) Xy1) P) as proof of (P0 Xy1)
% Found eq_ref000:=(eq_ref00 P):((P Xx1)->(P Xx1))
% Found (eq_ref00 P) as proof of (P0 Xx1)
% Found ((eq_ref0 Xx1) P) as proof of (P0 Xx1)
% Found (((eq_ref fofType) Xx1) P) as proof of (P0 Xx1)
% Found (((eq_ref fofType) Xx1) P) as proof of (P0 Xx1)
% Found eq_ref000:=(eq_ref00 P):((P Xy1)->(P Xy1))
% Found (eq_ref00 P) as proof of (P0 Xy1)
% Found ((eq_ref0 Xy1) P) as proof of (P0 Xy1)
% Found (((eq_ref fofType) Xy1) P) as proof of (P0 Xy1)
% Found (((eq_ref fofType) Xy1) P) as proof of (P0 Xy1)
% Found choice_operator:=(fun (A:Type) (a:A)=> ((((classical_choice (A->Prop)) A) (fun (x3:(A->Prop))=> x3)) a)):(forall (A:Type), (A->((ex ((A->Prop)->A)) (fun (co:((A->Prop)->A))=> (forall (P:(A->Prop)), (((ex A) (fun (x:A)=> (P x)))->(P (co P))))))))
% Instantiate: b:=(forall (A:Type), (A->((ex ((A->Prop)->A)) (fun (co:((A->Prop)->A))=> (forall (P:(A->Prop)), (((ex A) (fun (x:A)=> (P x)))->(P (co P)))))))):Prop
% Found choice_operator as proof of b
% Found eq_ref00:=(eq_ref0 Xx1):(((eq fofType) Xx1) Xx1)
% Found (eq_ref0 Xx1) as proof of (((eq fofType) Xx1) b)
% Found ((eq_ref fofType) Xx1) as proof of (((eq fofType) Xx1) b)
% Found ((eq_ref fofType) Xx1) as proof of (((eq fofType) Xx1) b)
% Found ((eq_ref fofType) Xx1) as proof of (((eq fofType) Xx1) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xx2)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx2)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx2)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xx2)
% Found eq_ref00:=(eq_ref0 Xy1):(((eq fofType) Xy1) Xy1)
% Found (eq_ref0 Xy1) as proof of (((eq fofType) Xy1) b)
% Found ((eq_ref fofType) Xy1) as proof of (((eq fofType) Xy1) b)
% Found ((eq_ref fofType) Xy1) as proof of (((eq fofType) Xy1) b)
% Found ((eq_ref fofType) Xy1) as proof of (((eq fofType) Xy1) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xy2)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xy2)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xy2)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xy2)
% Found eq_ref00:=(eq_ref0 Xy1):(((eq fofType) Xy1) Xy1)
% Found (eq_ref0 Xy1) as proof of (((eq fofType) Xy1) b)
% Found ((eq_ref fofType) Xy1) as proof of (((eq fofType) Xy1) b)
% Found ((eq_ref fofType) Xy1) as proof of (((eq fofType) Xy1) b)
% Found ((eq_ref fofType) Xy1) as proof of (((eq fofType) Xy1) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) Xy2)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xy2)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) Xy2)
% Found
% EOF
%------------------------------------------------------------------------------